Advanced Research in Electrical and Electronic Engineering

Print ISSN: 2349-5804; Online ISSN: 2349-5812 Volume 2, Number 9 April-June (2015) pp. 76-79

© Krishi Sanskriti Publications
http://www krishisanskriti.org/areee.html

Basic Trigonometric Function Core in Duble FPU

Raman Kumar! and Sumit Kumar?

L2\ .Tech (VLSI Design) CDAC Noida (GGSIPU)
E-mail: 'raman16491@gmail.com, *sksaxena05112@gmail.com

Abstract—A floating-point unit(FPU) is a math Co-processor, which
is a part of a computer system specially designed to carry out
operations on floating point numbers . Double-precision floating-
point is a commonly used format on PC’s due to its wider range over
single-precision floating point.. The proposed work is to build an
efficient basic trigonometric function core using double precision
floating point unit that performs basic trigonometric functions with
reduced complexity of the logic used and reduce the memory
requirement . The functions performed are handling of Floating Point
data, perform any one of the following trigonometric operations like
angle of sine , cosine , tan, cot, sec and cosec. All the above modules
have been clocked and evaluated under Spartan 3E Synthesis
environment. All the functions are built by possible efficient
algorithms with several changes incorporated at our end as far as the
scope permitted. The coding is done in verilog.

1. INTRODUCTION

Many people consider floating-point arithmetic unit an
esoteric subject. This is rather surprising because floating-
point is ubiquitous in computer systems. Almost every
language has a floating-point data type; computers from PC’s
to supercomputers have floating-point accelerators; most
compilers will be called upon to compile floating-point
algorithms from time to time; and virtually every operating
system must respond to floating-point exceptions such as
overflow. There are some aspects of floating point that have a
direct impact on designers of computer systems.

Every computer has a floating point processor or a dedicated
accelerator that fulfills the requirements of precision using
detailed floating point unit. The main applications of floating
points today are in the field of medical imaging, motion
capture, geography to measure distances between landmarks,
motion capture and audio applications, including broadcast,
conferencing, musical instruments and professional audio & in
satellite navigation systems, and hence in Global positioning
system(GPS). The performances of computers that handle
such applications are measured in terms of the number of
floating point operations they perform per second. Double
Precision floating point format is a format which occupies 8
bytes (64 bits) in memory and represents a wide dynamic
range of values by using a float point.

IEEE 754 specifies four formats for representing floating-
point values:

Single-precision (32-bit)

Double-precision (64-bit)

Single-extended precision (> 43-bit, not commonly used)
Double-extended precision (> 79-bit, usually implemented
with 80 bits

L=

But single and double precision is preferred. For our project
we decided to verify trigonometric functions in double
precision Floating point unit for higher precision and with
compatibility to machine system where three basic
components are sign , exponent and mantissa field. Sign field
is 1 bit long and in sign field ‘0’ denotes a positive number
and a ‘1’ denotes a negative number. Exponent field is 11 bit
long, occupying bits 62-52. The value in this 11 bit field is
offset by 1023 so actual exponent used to calculate the value
of the number is 2(e"'**’) and mantissa bit is 52 bit long for
Double precision FPU. The main reason of employing double
precision over single precision is the high significand
precision of about 16 decimal digits and range of
approx.107% to 10"%

As single precision FPU consist of 1 bit long sign field, 8 bit
long exponent field and 23 bit long mantissa field giving 32
bit output. Sign bit is used to denote whether output number
will be positive or negative.

2. ARCHITECTURE

The overall Architecture is shown in Fig. 1. It consist of
ACTYV Unit, and basic trigonometric function unit,dividor unit
and N-Bit input and 64-bit output .

N-BIT
INPUT
w

—_— IF = 360

DIVIDOR

64 BIT
OUTPUT

ACTV INPUTS
3 BIT

Fig. 1

Basic Trigonometric Function Core in Duble FPU

77

Some Registers used are :

ACTYV which decides which function to activate
QUAD which specifies value in quadrants.
DATAL which gives final result.

3. HOW IT WORKS

In this version all the trigonometric modules are created as
look up table (LUT).To all the input values there is an
equivalent double precision floating point unit value, to the
input an un-signed value is given.It also supports all
quadrants.

Casel: If the given input value is less than 90 degrees from
the top module “00” value is passed on to the “quad” register,
this register helps us to know in which quadrant the value lies
in.

Case2: If the value is between 91 and 180, then the values
should be subtracted from the decimal value 180 so that value
will be mirrored. For example the value of 89 and 91 would be
the same. When the value is in between 90 and 180, 180 is
subtracted from input value as the value is less than 180, the
resultant will be positive. In the same way all the values can
be mirrored using the existing 90 values, “01” value is passed
on to “quad” reg.

Case3: If the value is between 181 and 360, then the value
should be subtracted from 180. Again in this two things should
be considered, after subtracting the input from 180 if the value
is less than 90 then the case 1 is repeated “10” value is passed
on to quad, else if the resultant is greater than 90 then the case
2 is repeated, “11” value is passed on to the “quad” register .

Case4: If the value is greater than 360 then the value is passed
on to divider module. Modulo division is performed in this
block until the remainder value is less than 360, remainder
value is taken and all the above cases will be repeated.

&
b
Quadrant 2: Quadrant 1:
€05, sec, tan, cot — All trig functions
/ sin, csc + are + \
\ Quadrant 3: Quadrant 4:
cos. sin. sec. csc — sin. €sc. tan. cot —
tan, cot + €05, sec +
//
\ //
L 4

Fig. 2

4. SYNTHESIS RESULT

4.1 Top Module (CORE)

DEGREES [N:(] -
[—
TOP MODULE
RST — QUTPUT

[63:0]

o —
[y —

Fig. 3

The input signals to the top level module are the following:

o (LK (global)

e RST (global)

o ENABLE (set high to start operation)

® ACTV (activation, 3 bits, 000 = sin_enable, 001 =
cos_enable, 010 = tan_enable, 011 = csc_enable, 100 =
sec_enable, 101 = cot_enable)

® DEGREES (32 bits)

® DATAI (output from operation, in 64 bits)
4.2 Sine Module

sine__lut

degrees(31.0) __|
quad(1:0) _ |
clk__ |
enable _ |

rst |

sine__lut

Fig. 4

4.3 Cosine Module

cosine_lut

degrees(31.0 data(63:0)
quad(1.0)
clk

enable

rst

cosine__lut

Fig.5

Advanced Research in Electrical and Electronic Engineering
Print ISSN: 2349-5804; Online ISSN: 2349-5812 Volume 2, Number 9 April-June (2015)

Raman Kumar and Sumit Kumar

4.4 Tangent Module

tangent lut

degrees(31.0) data(63:0)

quad(1:0)

clk

enable

rst

tangent_lut

G

Fig. 6

4.5 Cotangent Module

quad(1.0)
clk
enable

rst

cotangent_lut

degrees(31.0) da

cotangent_lut

.

ta(63:0)

4.6 Secant Module

Fig. 7

degrees(31:0)
quad(1.0)
clk

enable

-
0
4

secant_lut

data(63:0)

secant_lut

4.7 Cosecant Module

Fig. 8

cosecant_lut

enable

rst

clk

quad(1:0)
degrees(31:0)

a

L

cosecant_lut

ta(63:0)

Fig. 9

5. SIMULATION RESULT

Case 1 : Positive output (Fig. 10)

WHEN INPUT DEGREE IS 112,
C003CCFA561175D3
1100000000000011110011001111101001010110000100
010111010111010011 (binary form).

In double fpu form =

-1.M *27E-1023 = -2.4750868534162958

So Activating tangent function tanll2 = -
2.4750868534162958 (2™ quadrant) hence ouput is
verified.

OUTPUT:-

Case 2 : Negative output (Fig. 11)

When INPUT is 40
3FF3116C3711527E
0011111111110011000100010110110000110111000100
010101001001111110(binary form).

degree, OUTPUT:-

In double fpu form =
+1.M*2°E-1023= +1.1917535925942099
By activating COTANGENT funcn cot

40=1.1917535925942099(1* quad.) so output is correct.

» I]

(41832 s
Value [oons s JBtUrs pons s 50 Pmrs
' LU UL UL UV
! \ \
gen] | 3 Y R Y ® &

0

» N il 2 5 1 1 3
ettBeetasS LI 30 BREGHITRTI) o (ot gfisdy . ([} CebMORRE [
i] |

17000 17500 18000 1,850ns 1,90rs 1,950 rs 200
B LI AR UL A U ACACALALALILA,
1& endhle
p B cegesf3t] @ 17 4 m
m it
X 1] { 5 :
(Y a2 | sesstiseaniis xxx T S (T S o]

Fig. -10

Fig. 11

6. CONCLUSION AND FUTURE WORK

We have to implement a trigonometric function core which is
able to produce double-precision results with very high
throughput. The logic can further be optimized, also to the

Advanced Research in Electrical and Electronic Engineering
Print ISSN: 2349-5804; Online ISSN: 2349-5812 Volume 2, Number 9 April-June (2015)

Basic Trigonometric Function Core in Duble FPU

79

input it needs to be changed from signed to unsigned or 64 bit
fpu format so that trigonometric functions can be calculated in
both degrees as well as radians. However, the current
implementation can be further optimized through the design of
a single cycle double-precision floating point multiplier.
Inverse trigonometric functions, hyperbolic trigonometric
functions will be implemented.

REFERENCES

[1] Altera Corp. Stratix II Device Overview. Data Sheet
DSSTXGX-2.2, Altera Corp., San Jose, California, Dec 2004.

[2] Altera Corp. Floating-Point Multiplier. Functional Specifications
A-FS-04-01, Altera Corp., San Jose, California, Jan1996.

Advanced Research in Electrical and Electronic Engineering
Print ISSN: 2349-5804; Online ISSN: 2349-5812 Volume 2, Number 9 April-June (2015)

